
Two Valence Bond State Model for Molecular Nonlinear Optical Properties.
Nonequilibrium Solvation Formulation

Ward H. Thompson,† Mireille Blanchard-Desce,‡ and James T. Hynes*,†

Department of Chemistry and Biochemistry, UniVersity of Colorado, Boulder, Colorado 80309-0215, and
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The two valence bond state model frequently used to describe the nonlinear optical properties of push-pull
polyenes and the effect of the bond length alternation (BLA) coordinate is generalized to include the effects
of nonequilibrium solvation. It is shown how a polar solvent modifies, via the diabatic gap between the
valence bond free energy surfaces, the character of the electronically adiabatic ground state and consequently
the BLA and the (hyper)polarizabilities. The parameters characterizing a molecule in the model can be readily
extracted from experimental measurements. The model is applied to the calculation of (hyper)polarizabilities
for several molecules as a function of solvent polarity, and comparison is made with both experimental and
previous theoretical results. Some directions for an improved description are discussed.

I. Introduction

It has long been recognized that organic molecules consisting
of electron donor and acceptor groups separated by a conjugated
chain (sometimes referred to as push-pull molecules) can
possess large optical (hyper)polarizabilities.1 These molecules
have thus attracted a great deal of attention for their possible
use in a wide range of technological applications.2 Recently,
Marder and co-workers have discovered a relationship between
the nonlinear optical properties of these molecules and the
geometry of the alternating short and long bonds in the
intervening chain,3-6 which they quantify in terms of a bond
length alternation (BLA) coordinate. Goddard and co-workers
have used a two valence bond (VB) state model (consisting of
a neutral and a zwitterionic form, which are mixed to produce
the ground and excited electronic states) to describe the effect
of the BLA on the hyperpolarizabilities.7-9 Barzoukas, Blan-
chard-Desce, and co-workers have utilized a similar model,10-13

but characterize the system in terms of a different parameter,
MIX, which represents the degree of zwitterionic character in
the electronic ground state and which can, in appropriate cases,
be related to the BLA.10 The applicability of the two VB state
perspective, which is an attractive albeit comparatively simpli-
fied description, has been verified in a number of cases both
by comparison with experiment and with (non-VB perspective)
electronic structure calculations.7,8,14

As noted by several groups,8,10,11,15-19 it is clear that the role
of the solvent can be significant in determining the character-
istics of these molecules. The solvent preferentially stabilizes
the zwitterionic form altering the equilibrium value of the BLA
coordinate in the ground state of the molecule and thereby
changing its optical properties. Indeed, understanding the role
of the solvent can be particularly important in the context of
optimizing the nonlinear optical properties of a system. For
example, one would like to be able to predict which solvents
or more generally, which environmentswill produce the largest
hyperpolarizability for a given molecule. An explicit formula-

tion for the solution problem is required, since as shown in ref
18, attempted assessments of solvent effects via gas-phase
calculations in external fields can be misleading.

There have been several studies of the effects of a solvent
on the polarizabilities;8,10,11,15-23 in the two VB state context,
the solvation has been described in the equilibrium limit.8,10

Here we present a nonequilibrium treatment of the solvent within
the two valence bond state model, while including the BLA
geometric coordinate; the nonequilibrium formulation is required
because, while optical transitions occur from an equilibrium
solvated ground electronic state, a nonequilibrium solvation state
is produced in the transition by the Franck-Condon principle,
and this feature is reflected in the various linear and nonlinear
polarizabilities (aspects of nonequilibrium solvation have been
included in the context of other solute electronic structure
descriptions, e.g., refs. 16, 17, 19, 22, and 23). Using the
solvated ground and excited electronic states with a proper
accounting of solvation effects within a dielectric continuum
framework, the nonlinear optical properties (in the form of the
(hyper)polarizabilities) of the molecules in the two VB state
description are generated as a function of the solvent polarity.
In addition, we show how the parameters characterizing a
molecule in the model can be conveniently extracted from
experimental measurements of properties other than the polar-
izabilities.

The organization of the remainder of this paper is as follows.
Section II presents an outline of the two VB state model and
describes the BLA and solvent coordinates; this model has as
its starting point a description of the electronically uncoupled
free energy surfaces for the VB states in a general form familiar
from electron-transfer theory.24,25 We then derive the equations
relevant to the calculation of the (hyper)polarizabilities. Ap-
plication of the model to several representative molecules is
made in section III using experimental measurements to
determine the model parameters. The dependence of the
(hyper)polarizabilities on the solvent dielectric constant is
obtained and compared to the results from the model of Chen
et al.8 Concluding remarks are given in section IV.
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II. Theory

A. Description of the Model. To describe push-pull
molecules, we consider two valence bond states, which we refer
to as neutral (N) and zwitterionic (Z). What we call the neutral
state actually consists of small charges,(QN, on the electron
donor and acceptor groups (in this fashion, the small but finite
dipole moment10-13 of the N state is taken into account; see
below), while the zwitterionic state possesses significantly
greater charge separation than the neutral resulting in charges
(QZ on the donor and acceptor. In addition, the ordering of
single and double bonds in the conjugated chain connecting the
donor and acceptor groups in the N state is reversed in the Z
state. The definitions of the N and Z states are illustrated in
Scheme 1 for a general chain length represented byn, the
number of double bond units.

We formulate the electronic structure problem in solution in
terms of two coordinates: a geometrical one, the BLA, as
discussed in the Introduction, and a solvent coordinates. The
definition of the BLA coordinate can vary depending on the
molecular structure. However, it can generally be thought of
as the difference between the long and short bond lengths in
the conjugated chain connecting the donor and acceptor
groups3-9 (normalized so that it is independent of the number
of bonds in the chain); such a coordinate has a long history.18

The solvent coordinates, as in a range of other solution problems
involving electron transfer,24,25charge-transfer reactions involv-
ing bond making and breaking,26 or time-dependent fluores-
cence,27 is treated in the dielectric continuum approximation
and is a measure of the comparatively slow nuclear, orientational
polarization in the solvent (as opposed to the rapid electronic
polarization of the solvent). Both coordinates are most con-
veniently defined in terms of the electronically diabatic valence
bond states, which can then be used to describe the state of the
solute molecular geometry and the solvent nonequilibrium
orientational polarization for the electronically adiabatic ground
and excited electronic states resulting from the electronic
coupling of the VB states.

Following Goddard and co-workers,7,8 we denote the vibra-
tional coordinate (the BLA) byq and assume it is harmonic.
As in other problems,24-27 the solvent coordinates can also be
considered to be harmonic. Thus, the free energies of the
uncoupled valence bond states are given by the two-dimensional
harmonic surfaces

and

as illustrated in Figure 1, whereqN
0 (sN

0) and qZ
0 (sZ

0) are the
equilibrium values of the BLA (solvent) coordinate in the neutral
and zwitterionic states, respectively, andkq andks are the force
constants for the BLA and solvent coordinates, respectively
(assumed to be the same for both states).GN,0,0 (GZ,0,0) is the
free energy of the neutral (zwitterionic) state when the BLA
and solvent coordinates are at their equilibrium values for that

VB state. Note that this includes a contribution from the
equilibrium solvation by the electronic and orientational degrees
of freedom of the solvent. In the Marcus-Born model of
solvation,25 this solvation energy can be expressed as

whereε is the static dielectric constant of the solvent,QN,Z is
the effective charge magnitude on the donor and acceptor groups
in the neutral and zwitterionic states, respectively, and

Here rD and rA are the radii of the electron donating and
accepting groups andRDA is the distance between their centers.
(We note that the underlying geometric model25 giving eq 2.4
is a quite simplified one for push-pull molecules; we will
indicate in section II.C how this factor is effectively determined.)

In the same model,25 the solvent reorganization energy

which is the difference between the free energy of the zwitter-
ionic nonequilibrium solvation free energy evaluated ats ) sN

0

ands ) sZ
0, is given by

where∆Q is the effective charge transfer between the N and Z
states and whereε∞ is the high-frequency, optical, dielectric
constant. Since the latter reflects the electronic polarization of
the solvent, the combination of dielectric constants in eq 2.6
reflects the feature that the reorganizational energy and thus
the solvent force constant are related to the orientational,
nonelectronic nonequilibrium solvent polarization. By contrast,
both the solvent electronic and orientational polarizations
contribute to the equilibrium solvation free energy eq 2.3, so
that only the static dielectric constantε appears there. For any
given value of the solvent coordinates in Figure 1, the electronic
polarization of the solvent is separately equilibrated to each of
the charge distributions of the N and Z VB states and so does

SCHEME 1

GN(q, s) ) GN,0,0 + 1
2
kq(q - qN

0)2 + 1
2
ks(s - sN

0)2 (2.1)

GZ(q, s) ) GZ,0,0 + 1
2
kq(q - qZ

0)2 + 1
2
ks(s - sZ

0)2 (2.2)

Figure 1. Schematic picture of the neutral and zwitterionic diabatic
valence bond free energy surfaces in the vibrational (q) and solvent (s)
coordinates. The reorganization energiesλq andλs and the difference
in equilibrium free energiesV0,0 are indicated. The picture shown is
for the case whereV0,0 > 0.

GN,Z;s(ε) ) -(1 - 1
ε) QN,Z

2 SF (2.3)

SF ) 1
2rD

+ 1
2rA

- 1
RDA

(2.4)

λs ) 1
2
ks(sZ

0 - sN
0)2 (2.5)

λs ) ( 1
ε∞

- 1
ε) ∆Q2SF (2.6)

∆Q ) QZ - QN
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not enter as an explicit variable coordinate, although it
contributes to the equilibrium solvation free energiesGZ,N;s(ε).
On the other hand, a givens value in Figure 1 corresponds to
a certain orientational polarization in the solvent, which in
general is in equilibrium with neither of the VB N and Z charge
distributions. Even if thesvalue corresponds to the equilibrium
orientational polarization for one of the VB states, say N, that
s value is not the equilibrium one for the other VB state, say Z,
by the Franck-Condon principle; while the solvent electronic
polarization follows the solute charge distribution change, the
slow solvent orientational polarization does not.

In a similar vein, one can define a reorganization energyλq

for the vibrational coordinateq, defined to be the (free) energy
difference of the zwitterionic VB state energy between the value
q ) qN

0 appropriate for equilibrium in the neutral state and the
value q ) qZ

0 appropriate for equilibrium in the zwitterionic
state:

The model equations above have the structure and general
interpretation of those used in a variety of problems, especially
in electron-transfer rate theory.24,25 In those problems, the
electronic coupling between two electronically diabatic states
(here N and Z) is usually taken to be small. In the present
problem, however, the electronic coupling is significant7,8,10-13

and plays a major role in determining the molecular nonlinear
optical properties; estimated couplings for various push-pull
molecules are largesin the 1 eV range7,8,10-13sand in this
framework, the solute molecular polarizability, for example,
changes with solvent via the shifting mixture, in the ground
electronic state, of the N and Z states allowed by the coupling.
Before proceeding, it is important to immediately stress that
couplings of this order of magnitude for the significant donor-
acceptor distances typical of push-pull molecules are a signal
that the two VB state description is aneffectiVe one,28 a point
made long ago in a related connection by Pauling29 (for a general
discussion, see ref 30); this is to say that the two VB states are
those that, when mixed with a self-consistently determined
coupling, produce the required properties of the ground and first
excited electronically adiabatic states. We will return to this
important point in the concluding section.

Thus, the neutral and zwitterionic valence bond (diabatic)
states are electronically coupled, resulting in electronically
adiabatic ground- and excited-state surfaces given by

Here t is the electronic coupling between the neutral and
zwitterionic states and is considered to be independent of both
q ands. We have defined the quantity

which from eqs 2.1, 2.2, 2.5, and 2.7 can be written as

and which we refer to as the diabatic gap.31 The diabatic gap

V(q, s), which is the difference at a givenq ands between the
two free energy surfaces illustrated in Figure 1, is a fundamental
quantity in all that follows. First, its equilibrium value
characterizes the composition of the ground-state wave function
Ψg, which can be expressed as7,32

with

being the equilibrium fraction of zwitterionic character in the
ground state.feq ) 0 implies the ground state is purely neutral,
feq ) 1 purely zwitterionic, andfeq ) 1/2 an equal mixture of
the two. Alternatively, in the formulation of Barzoukas,
Blanchard-Desce, and co-workers, the wave function can be
expressed as10

whereθ is related to the equilibrium diabatic gap and coupling
by tanθ ) 2t/Veq. θ can also be related to the parameter MIXeq

(a quantity analogous tofeq) as10

It is thus easy to see the relationship10 betweenfeq and MIXeq

and that MIXeq ranges from-1 to +1 with MIXeq ) -1
corresponding to a completely neutral ground state, MIXeq ) 1
a zwitterionic ground state, and MIXeq ) 0 an equal mixture of
the two; in the BLA language for push-pull polyene systems,
the latter condition corresponds to equal bond lengths in the
intervening chain, i.e.,π electron delocalization.33

The second aspect of the importance of the diabatic gapVeq

is that, in the two-level approximation,1,34 the various polariz-
abilities can be conveniently expressed in terms of it, localizing
theq ands dependence. Expressed also in terms of MIXeq, the
diagonal elements of the static (zero-frequency) first-, second-,
and third-order polarizabilities are given by7,10,35

where the charge shift dipole momentµCS ) µZ - µN, where
µZ andµN are the dipole moments of the neutral and zwitterionic
states36 (the z-axis is chosen to lie along the dipoleµCS), t is
the electronic coupling, and

λq ) 1
2
kq(qZ

0 - qN
0)2 (2.7)

Ge,g(q,s) )
GN(q,s) + GZ(q,s)

2
( 1

2
[V(q,s)2 + 4t2]1/2 (2.8)

V(q,s) ) GZ(q,s) - GN(q,s) (2.9)

V(q,s) ) GZ,0,0 - GN,0,0 + λq

qZ
0 + qN

0 - 2q

qZ
0 - qN

0
+

λs

sZ
0 + sN

0 - 2s

sZ
0 - sN

0
(2.10)

Ψg ) (1 - feq)
1/2ψN + feq

1/2ψZ (2.11)

feq ) 1
2

- 1
2

Veq

[Veq
2 + 4t2]1/2

(2.12)

Ψg ) cos
θ
2

ψN + sin
θ
2

ψZ (2.13)

MIX eq ) -cosθ ) -
Veq

[Veq
2 + 4t2]1/2

(2.14)

MIX eq ) 2feq - 1 (2.15)

Rzz)
2t2µCS

2

Egap
3

) (1 - MIX eq
2 )3/2

µCS
2

4t
(2.16a)

âzzz)
6Veqt

2µCS
3

Egap
5

) -MIX eq(1 - MIX eq
2 )2

3µCS
3

8t2
(2.16b)
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Egap
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is the gap31 Ge - Gg between the ground and electronic state
surfaces at equilibrium in the ground state (cf. eq 2.8). We
note that we have used the Taylor series convention37 for the
polarizabilities given here in which the total dipole moment is
expressed as

whereE is the applied electric field,µ0 is the permanent dipole
moment, R is the polarizability, andâ, γ, etc., are the
hyperpolarizabilities.

B. Ground-State Equilibrium and the Diabatic Gap.
Having outlined the salient features of the two VB state model,
we now proceed to find the equilibrium values ofq ands on
the electronic ground-state free energy surface. These are
critical in the determination of the nonlinear optical properties
of the molecule since they are related to the equilibrium
electronic structure of the ground state and dictate the initial
conditions in a Franck-Condon transition to the excited state.
The equilibrium values, which we shall refer to asqeq andseq,
satisfy the conditions

Solution of these two equations leads to the results

and

These equations indicate how the equilibrium molecular geom-
etry38 and equilibrium solvent orientational polarization vary
between the limiting neutral and zwitterionic forms with the
ground-state electronic structure measure MIX. (They are
analogous to the equation connecting10 the ground-state dipole
momentµg to the VB state dipole momentsµN andµZ.) Note
that the expression forqeq depends ons and, similarly, seq

depends onq. Since the global minimum is located at (qeq,
seq), we wish to evaluate the above equations using MIX(qeq,
seq) ≡ MIX eq. This allows a relationship betweenqeq andseq

to be established, namely

where feq is the fraction of zwitterionic character in the
equilibrium ground state. It is interesting to note that while
we began with a description of the system in terms ofs andq
as independent variables, the values at the global minimum are,
in fact, linearly related as just seen. It should be emphasized,
however, that the determination of either equilibrium value
requires the solution of one of the simultaneously valid nonlinear
eqs 2.20 or 2.21.

We now find the key quantity, the diabatic gap evaluated at
the minimum on the ground electronic state surface. In view
of the above discussion, this gap31 can be expressed in terms
of qeq alone (or, equivalently,seq alone). From eqs 2.10, 2.20,

and 2.21, it is easily shown that

where

is the difference between the zwitterionic and neutral state free
energies evaluated at their equilibrium positions, (qZ

0, sZ
0) and

(qN
0 , sN

0), respectively, neither of which in general is equal to
the ground-state equilibrium location (qeq, seq) via eqs 2.20 and
2.21. Here V0 is the gas-phase difference between the
zwitterionic and neutral state (free) energies evaluated at their
equilibrium positionsqZ

0 andqN
0 , and∆Gs ) -(1 - 1/ε)(QZ

2 -
QN

2)SF is the difference of the equilibrium solvation free
energies eq 2.3.

The expression eq 2.23 for the diabatic gap bears a remarkable
similarity to that found by Lu et al.7 for the gas-phase case.
Solvation effects are responsible for the several differences in
eq 2.23 compared to that gas-phase diabatic gap expression.
First, V0,0 contains a contribution∆Gs from the differential
solvation of the zwitterionic and neutral states by the solvent.
Second, the force constant for theq vibrational degree of
freedom becomes “renormalized” by the factor (1+ λs/λq),
owing to the presence of the solvent orientational degrees of
freedom. Finally, the actual value ofqeq is different in solution
than in the gas phase (since both eqs 2.20 and 2.21 must be
simultaneously satisfied); equivalently, the electronic composi-
tion of the ground state differs from that in the gas phase.

The diabatic gapV(qeq) evaluated at the ground electronic
state equilibrium configuration can be written in a useful and
appealing form involving the equilibrium value of MIX by
combining eq 2.23 with eq 2.20 evaluated ats ) seq and the
vibrational reorganization energy definition eq 2.7 to find

The content of this equation is the following. Consider first
the limit that MIXeq ) -1, i.e., the ground adiabatic state is
just the pure neutral VB state and so (qeq, seq) ) (qN

0 , sN
0).

Equation 2.25 then says that the equilibrium diabatic gap
exceeds the differenceV0,0 of the equilibrium free energy values
for the zwitterionic and neutral state by the sum of the
reorganization energies; that this is correct is clear from Figure
1. As the ground state electronic structure progressively
involves a contribution from the zwitterionic VB state and MIXeq

increases in magnitude toward zero, this excess in the diabatic
gap overV0,0 will progressively diminish, as is also clear from
Figure 1; for example, whenV0,0 ) 0 so that MIXeq ) 0, the
excess vanishes. This having been said, it needs to be
emphasized that the formally linear eq 2.25 conceals very strong
nonlinear effects: MIXeq andV(qeq) ) V(MIX eq) are found by
requiring that eqs 2.14 and 2.25 are simultaneously satisfied,
and the former relation is highly nonlinear in the diabatic gap.
Thus, for example, MIXeq in eq 2.25 is not independent ofV0,0;
as an illustration, ifV0,0 ) 0 then both MIXeq and V(MIX eq)
must vanish.

Egap) [Veq
2 + 4t2]1/2 (2.17)

µ ) µ0 + RE + 1
2!

âE2 + 1
3!

γE3 + ... (2.18)

∂Gg(q, s)

∂q
) 0,

∂Gg(q, s)

∂s
) 0 (2.19)

qeq )
qZ

0 + qN
0

2
+

(qZ
0 - qN

0)

2
MIX( qeq, s) (2.20)

seq )
sZ

0 + sN
0

2
+

(sZ
0 - sN

0)

2
MIX( q, seq) (2.21)

seq - sN
0

sZ
0 - sN

0
)

qeq - qN
0

qZ
0 - qN

0
) feq (2.22)

V(qeq) ) GZ(qeq, seq) - GN(qeq, seq)

) V0,0 + 1
2
kq(1 +

λs

λq
) (qZ

0 - qN
0) [qZ

0 + qN
0 - 2qeq]

(2.23)

V0,0 ) GZ,0,0 - GN,0,0

) V0 + GZ;s - GN;s ) V0 + ∆Gs (2.24)

V(MIX eq) ) V0,0 - (λq + λs)MIX eq (2.25)
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An additional aspect of eq 2.25 is that this expression for
the gap does not depend explicitly on the individual vibrational
parameterskq, qN

0 , or qZ
0 but only their combination in the form

of the vibrational reorganization energy. Thus, in principle a
specific definition of the BLA coordinate is not required, but
rather only a knowledge ofλq. The situation is slightly different
for the solvation aspects since the solvent is in a generalized
sense providing an external field for the molecule: while only
the solvent reorganization energyλs enters the second term of
the right-hand side of eq 2.25, the equilibrium solvation free
energies for the two VB states enter intoV0,0, via eq 2.24. It
can also be noted that the sum of reorganization energies in eq
2.25 is related directly to the Stokes shiftS, the difference of
the absorption and relaxed emission energies in the special case
that MIXeq ) -1, so that the ground state is purely N and the
excited state is purely Z (see also Figure 1), namely,S ) 2(λq

+ λs). This follows directly from the definitionS )
[GZ(qN

0 , sN
0) - GN(qN

0 , sN
0)] - [GZ(qZ

0, sZ
0) - GN(qZ

0, sZ
0)] in that

case.
Our treatment above differs from that of two other discus-

sions8,10of solvent effects on nonlinear optical properties within
a two VB state framework. Chen et al.8 have presented an
extension of the gas-phase results of Lu et al.7 to account for
solvent effects. The treatment is the same as in the gas phase
with a single BLA coordinate (and no solvent coordinate) but
with an extra term added to the gas-phase diabatic gap; the
proposed gap with solvent effects included is8 (in our notation)

where Vgp is the gas-phase diabatic gap andGZ;s(ε) is the
equilibrium solvation free energy for the zwitterionic state
defined in eq 2.3.39 Barzoukas et al.10,11 suggest a related
inclusion of solvent effects via the equilibrium solvation free
energy of point dipoles. These treatments correctly suggest that
the solvent can influence the nonlinear optical properties by
stabilizing the zwitterionic form and reducing the diabatic gap
compared to the gas phase. However, they have the difficulty
that for the gap between the diabatic curvesswhich, as we have
noted previously, can be viewed in terms of a Franck-Condon
transition between those curves at fixedq and s valuessthe
electronic polarization of the solvent will adjust, while the
orientational solvent polarization will not; the latter, as empha-
sized earlier, is then by definition out of equilibrium with the
higher energy VB state. This fundamental nonequilibrium
solvation aspect of the problem cannot be treated solely by the
introduction of an equilibrium solvation free energy and requires
the type of analysis that we have presented in this paper.40

The consequences of a nonequilibrium treatment compared
to an equilibrium one can be clarified by examination of the
simplified case where all vibrational effects are absent and there
are charges on the donor and acceptor groups only in the
zwitterionic VB state. In addition, we consider only the solution
case, where the solvent dielectric constantε is equal to or greater
than ε∞. With these simplifications, the differenceD )
V(MIX eq) - Vs between eqs 2.25 and 2.26 for the diabatic gap
evaluated at equilibrium in the ground-state reduces to

where we have used eqs 2.24, 2.3, and 2.6. Since the fraction
of zwitterionic characterfeq is in the range 0-1, this difference
is always negative. In the most common case where the ground
adiabatic state is more neutral than zwitterionic in character (cf.

section III), this means that the nonequilibrium treatment of the
solvent lowers the diabatic gap more than the equilibrium
treatment. This indicates that one can expect larger solvent
effects in the nonequilibrium treatment than in the equilibrium
solvation analogue.

Returning to the general case, and following Barzoukas et
al.,10,11 we can relate the hyperpolarizabilities e.g.,â, to the
variation of lower order ones with solvent dielectric constant,
e.g.,∂R/∂ε. First, from eqs 2.16, the variation of MIXeq with V
in eq 2.14 and the fact that theε variation of, e.g.,R, must
arise from theε dependence ofV, one has

whereµg is the ground-state dipole moment and whereF is the
factor

where we have used eq 2.25 and the fact that MIXeq depends
on ε only through the equilibrium diabatic gap.41 The results
in ref 11 (see also ref 10), based on an equilibrium solvation
perspective, are equivalent to keeping only the term-∂V0,0/∂ε
in eq 2.29 (evaluated in ref 11 in a point dipole description).
We have verified in model calculations that the additional terms
in eq 2.29 accounting for nonequilibrium solvation effects
(through the reorganization energy) and for the shifting elec-
tronic composition of the ground state (through∂MIX eq/∂V ∝
R) are smoothly varying withε; thus, the basic qualitative
conclusion of ref 11sthat the shapes ofR, â, andγ as a function
of ε are similar to, though less symmetrical than, those obtained
as a function of MIXsstill applies.

C. Diabatic Gap Referenced to a Nonpolar Solvent.It is
instructive to rearrange the formulas in a manner convenient
for the introduction of experimental results. In particular, we
are motivated by the experiments of Barzoukas, Blanchard-
Desce, and co-workers who, from a combination of absorption
and electrooptical absorption experimental data,42 have been able
to obtain the diabatic gap, the electronic coupling, and the neutral
and zwitterionic dipole moments for a large number of
molecules in low-polarity solvents.12 Hence, we now proceed
to show how one can use the knowledge of these quantities in
a “reference” solvent to obtain the diabatic gap and equilibrium
value of MIX in an arbitrary solvent. This procedure avoids
difficulties associated with the application of simplified geo-
metric model equations to molecules of some complexity, noted
below eq 2.4, and with the charge difference∆Q appropriate
for an effective two VB state model (see discussion below eq
2.7). For convenience, we take the reference solvent to be that
for which ε ) ε∞, so that there is no orientational polarization
(how this is dealt with in practice is discussed in section III).
In what follows, we refer to the diabatic gap as a function of

Vs ) Vgp + feqGZ;s(ε) (2.26)

D ) -QZ
2SF(1 - 1

ε∞)(1 - feq) - QZ
2SF( 1

ε∞
- 1

ε)feq (2.27)

R ) F µCS

∂µg

∂ε

â ) F µCS
∂R
∂ε

γ ) F µCS
∂â
∂ε

(2.28)

F ) -(∂V
∂ε)-1

) [-
∂V0,0

∂ε
+

∂λs

∂ε
MIX eq]-1 [1 + (λq + λs)

∂MIX eq

∂V ]
(2.29)
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dielectric constant,V(ε), where it is implicit that this represents
the gap at the global minimum on the ground electronic state
surface.

For the case of a solvent withε ) ε∞, the diabatic gap can
be written from eqs 2.24 and 2.25 as

We have also noted thatλs is zero in this case, as can be easily
seen from eq 2.6.43 Analogously, for a solvent with a general
static dielectric constantε * ε∞, we have

Upon solving forV0 in eq 2.30 and substituting into eq 2.31,
we obtain

It is easy to see from the definition of∆Gs ) GZ;s - GN;s and
eq 2.3 that this reduces to

This is a central result as it relates the diabatic gap and
equilibrium value of MIX in an arbitrary solvent to the values
in a reference solvent (here taken to be that withε ) ε∞). This
equation and eq 2.14 form a nonlinear equation that can be
solved in an iterative manner given a knowledge ofλq andλs.

The unknown reorganization factor in eq 2.6 forλs, ∆Q2SF,
can be derived for a molecule from solvatochromic data in which
the absorption energy is measured in different solvents. The
absorption energy is given by the electronicallyadiabaticgap,
from which in the two VB state model the diabatic gap can be
obtained from eq 2.17 as

With the absorption energy in the reference solventEgap(ε∞)
known, then measurement ofEgap(ε2) in a second solvent yields
V(ε2) and MIXeq(ε2) ) -V(ε2)/Egap(ε2) (through eq 2.14).
Solution of eq 2.33 forλs leads to the following expression for
∆Q2SF in terms of the measured quantities andλq

The practical implementation of this will be discussed in section
III. We note that here and in eq 2.33 the ratio (QZ + QN)/(QZ

- QN) is taken to be equal to the corresponding ratio with the
charges replaced by the dipole moments, namely, (µZ + µN)/
(µZ - µN).

The reorganization energyλq associated with the BLA
coordinate is perhaps the most challenging parameter to obtain.
One could, for example, perform detailed molecular calculations
for individual molecules along the lines of ref 7 to determine
it. Another possibility is to extract it from Stokes shiftS
measurements for the molecule in theε ) ε∞ solvent. Recall
from the discussion of the very simplified case in section II.B

that S ) 2(λq + λs), which is just 2λq whenε ) ε∞; how this
could work in the general case is discussed in ref 44.

III. Applications

In the present section, we apply our theoretical model to the
hyperpolarizabilities of various push-pull polyenes for which
at least some relevant solution data are available.

We first consider the application of the model described in
section II to the 1,1-dicyano-6-(dibutylamine)hexatriene mol-
ecule treated by Chen et al.8 These authors used their model
for the inclusion of solvent effects to calculate the polarizabilities
R, â, γ, andδ as a function of solvent dielectric constantε. In
particular, they compared their results forγ to the third harmonic
generation experiments of Marder et al.3 and found good
agreement.

Here we show that the present model is equally capable of
reproducing the experimental polarizability,γ, if we obtain the
necessary parameters from the model itself (as opposed to the
alternative of using the parameters found by Chen et al. in the
present model; the values of the parameters depend on the model
used to interpret the experimental results). For this molecule
we assume, as do Chen et al., that the neutral VB state has no
dipole moment (QN ) 0). We adopt their values forqN

0 , qZ
0,

andkq giving λq ) 0.966 eV as well as the electronic coupling,
t ) 1.184 eV. (kq is obtained from a quantum chemistry
calculation8 while t is derived from experimental results.3,8) The
value of∆Q2SF ) QZ

2SF is obtained from eq 2.35 (rather than
from eq 2.26 as in ref 8) using the absorption energies in dioxane
(ε1 ) 2.209) withEgap(ε1) ) 2.648 eV and acetonitrile (ε2 )
37.5) with Egap(ε2) ) 2.604 eV;Egap(ε∞) is obtained from the
linear relationship betweenEgap(ε) and (1/ε∞ - 1/ε) established
from the values in dioxane and acetonitrile (see below for a
discussion of theε∞ value). The reference diabatic gap,V(ε∞),
and equilibrium value of MIX, MIXeq(ε∞), can be obtained from
the absorption energyEgap(ε∞) using eqs 2.34 and 2.14. Finally,
we use the same dipole momentµCS ) µZ - µN ) µZ ) 25.9
D found in ref 8 by matching the value ofγ in acetonitrile; this
determination is independent of the model for the solvent as it
only involves the magnitude ofµCS.

Figure 2 comparesγ(ω ) 0.65 eV) versus the solvent
dielectric constant for this molecule obtained from the present
model, the model of Chen et al.,8 and the experimental values
of Marder et al.3 (We have used the correction factor of ref 8
to obtain the values ofγ at ω ) 0.65 eV from the calculated
static, ω ) 0, values of γ). Both models reproduce the

V(ε∞) ) V0 + ∆Gs(ε∞) - λq MIX eq(ε∞) (2.30)

V(ε) ) V0 + ∆Gs(ε) - (λq + λs) MIX eq(ε) (2.31)

V(ε) ) V(ε∞) + ∆Gs(ε) - ∆Gs(ε∞) - (λq + λs) MIX eq(ε) +
λq MIX eq(ε∞) (2.32)

V(ε) ) V(ε∞) - λs(QZ + QN

QZ - QN
) - (λq + λs) MIX eq(ε) +

λq MIX eq(ε∞) (2.33)

V(ε) ) [Egap
2 (ε) - 4t2]1/2 (2.34)

∆Q2SF ) ( 1
ε∞

- 1
ε2

)-1

×

{V(ε∞) - V(ε2) + λq[MIX eq(ε∞) - MIX eq(ε2)]

(QZ + QN)/(QZ - QN) + MIX eq(ε2) } (2.35)

Figure 2. Comparison ofγ(ω ) 0.65 eV) for the 1,1-dicyano-6-
(dibutylamine) hexatriene molecule as a function of the solvent dielectric
constantε obtained from the present model (solid line), the model of
Chen et al. (ref 8) (dashed lines), and the experimental results of Marder
et al. (ref 3) (filled circles). Hereγ has been divided by a factor of 5
to compare with rotationally averaged experimental results.3,8

Two Valence Bond State Model J. Phys. Chem. A, Vol. 102, No. 39, 19987717



experimental polarizability well. The particularly good agree-
ment forγ in acetonitrile is a natural result of using this solvent
in determiningQZ

2SF and µCS as described above. That both
models should exhibit the same solvent dependence in Figure
2 is initially surprising in view of our discussion around eq 2.27,
where it was indicated that stronger solvent variation with the
solvent was to be expected for the present model. The resolution
of this seeming contradiction is that different values of the
parameterQZ

2SF in the two models result from the present type
of fitting. In order to reproduce the experimental hyperpolar-
izability γ in Figure 2, the model of Chen et al. requiresQZ

2SF

) 0.536 eV while the present model requires a value of almost
a factor of 2 smaller,QZ

2SF ) 0.283 eV. Thus the intrinsically
stronger solvent dependence of the present model, carried in,
e.g., the solvent reorganization energy eq 2.6, here proportional
to QZ

2SF, must be muted by the smaller value ofQZ
2SF in the

sort of fitting to experiment described above.
Having established that both models are capable of reproduc-

ing the experimental hyperpolarizabilityγ, we now turn to a
closer examination of the properties of the models. To this end,
we perform calculations in which the same parameters are input
into both models. To this end, we perform calculations in which
the same parameters are input into both models and compare
the results as a function of solvent polarity. We consider
molecules for which experimental absorption and electrooptical
absorption measurements have been made in dioxane.42 (For
dioxane,ε is slightly greater thanε∞,45 so it cannot serve as the
reference solvent for whichε ) ε∞; the reference solvent
information must instead be determined by extrapolation, as
discussed below.46) These measurements give the diabatic gap
in dioxaneV(ε1), the electronic couplingt, MIX eq(ε1), and the
dipole moments in the neutral and zwitterionic states,µN and
µZ, respectively; recall that the couplingt is being treated as
independent of the solvent.47 Solvatochromic dataEgap(ε) will
be used (see below) to obtain∆Q2SF, which gives the solvent
reorganization energyλs. As for the vibrational reorganization
energyλq, the Stokes shift data necessary to implement the
considerations of ref 44 is not currently available. Here we
adopt the simple expedient of assuming thatλq ) 0.966 eV is
the same as in ref 8 and the same for all the molecules.

Scheme 2 presents structures for the neutral-state configura-
tions of the molecules studied.42 Three series of push-pull
phenylpolyenes bearing different D/A pairs have been examined.
Series1[n] and series2[n] have a julolidine electron-donating
group, whereas series3[n] presents a weaker, although more
soluble N,N-dibutylaniline moiety. Three different electron-
withdrawing groups of increasing acceptor strength have been
investigated: carboxaldehyde for series1[n], dicyanomethylene
for series2[n], and diethylthiobarbituric acid for series3[n].
(We have treated molecules with reasonably short chain
lengths because the flexibility of the molecule12 and the validity
of the two-state model30 both become issues for longer chains.)
The various parameters from the dioxane measurements are
collected in Table 1. The equilibrium values MIXeq listed there
for dioxane solvent indicate that, in this low-polarity solvent,
the ground adiabatic state is predominantly neutral in cha-
racter for all the molecules. In the remainder of this section,
we will refer to the present model as NES (nonequilibrium
solvation) and that of ref 8 as ES (equilibrium solvation) for
convenience.

As indicated in section II.C, the solvatochromic data48 is used
to obtain∆Q2SF via eq 2.35. In principle, two solvents would
suffice for this purpose. However, in practice, there is too much
scatter in the experimental absorption energies in different

solvents, and thus we fit the absorption energy versus (1/ε∞ -
1/ε) to a straight line (requiring that the line pass through the
point for dioxane). The intercept from this linear fit gives
Egap(ε∞), which is used along with the electronic coupling,t, to
obtain V(ε∞), eq 2.34, and MIXeq(ε∞) ) -V(ε∞)/Egap(ε∞), the
values for the reference solvent as discussed in section II.C.
Using the above linear fit to the absorption energies, any solvent
with ε * ε∞ can be then be used in eq 2.35 to obtain∆Q2SF

(the result is insensitive to the choice of the second solvent by
virtue of the linear fit). The values obtained for∆Q2SF using
this procedure are given in Table 1 for the molecules in Scheme
2.49 The diabatic gap and MIXeq for a given value ofε are
found by solving eqs 2.33 and 2.14 self-consistently. The
polarizabilities are then calculated using these values according
to eqs 2.16. The same parameters are adapted to the ES model
for purposes of comparison, that is,V0 (see eq 2.24 and
surrounding discussion) is chosen such that both models give
the same diabatic gap in the reference solvent,V(ε∞), and the
value of ∆Q2SF ) QZ

2SF used is obtained from eq 2.35 but
assuming a dipole moment of zero in the neutral state.

The results of the NES model presented in section II for the
polarizabilitiesR, â, andγ of the 1[1] molecule as a function
of solvent dielectric constant are shown in Figure 3, as are the
values obtained from the ES model. We pause to note that in
all the calculations presented here we assume a value for the
high-frequency dielectric constant ofε∞ ) 2. The choice ofε∞
) 2 may be considered somewhat arbitrary since the high-
frequency dielectric constant varies with solvent and is not
precisely 2. To test the consequences of this assumption we
have repeated the calculation of the (hyper)polarizabilitiesR,
â, and γ for the 1[1] molecule for each solvent for which
solvatochromic data was available48 using the individualε∞
values for each solvent. The results are shown in Figure 3,
and the values obtained are within 2% of those whereε∞ was
taken to be 2 for all solvents forR andâ and within 1% forγ.
In addition, the character of the results is the same in all cases
and the approximation is therefore quite reasonable, especially
for the present purposes.

Returning to the main thread, from Figure 3, it is immediately
apparent that for the1[1] molecule, there are not large
quantitative differences in the predictions of the NES and ES

SCHEME 2
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models for the absolute magnitudes of the polarizabilities. There
are, however, significant quantitative differences in the model
predictions for the variation ofR andâ as a function of solvent
polarity; the NES model predicts a significantly larger increase
(by about a factor of 2) inR andâ over the range ofε shown.
This is in line with the expectations discussed around eq 2.27.

Another interesting consequence of this difference in solvent
influence in the two models is seen in Figure 3 in the plot ofγ
versus ε for the 1[1] molecule. The two models make
qualitatively different predictions about which solvent should
be used to generate the maximum hyperpolarizability. The NES
model predicts that it should be a solvent withε ≈ 3.5 while
the ES model that it should instead be a high-polarity solvent.
This difference arises as follows. The relationship between the
polarizabilities andqeq (or MIXeq) has been well docu-
mented:7,8,10 changing the amount of zwitterionic character
(which is related to the BLA coordinate38) in the ground state
modifies the polarizabilities in a well-defined way described
by eqs 2.16. For example, as MIXeq varies from-1 to 1 (or
equivalently feq from 0 to 1), γ goes from zero, through a
maximum at MIXeq ) -(3/7)1/2, a deep minimum at MIXeq )
0, another maximum at MIXeq ) +(3/7)1/2, and back to zero.
The solvent preferentially stabilizes the zwitterionic state relative
to the neutral state, thereby increasing the zwitterionic character
of the adiabatic ground state with increasing solvent polarity.
In the case of the1[1] molecule in dioxane, MIXeq < -(3/7)1/2

and the NES model predicts that MIXeq increases with solvent
polarity with γ first increasing, then reaching a maximum and
finally decreasing. On the other hand, the ES model, with a
reduced influence of the solvent, finds thatγ only barely passes

the maximum. Thus, the different qualitative predictions by
the two models are due to a difference in the quantitative
predictions of the change in MIXeq with the solvent polarity,
with the NES model giving a significantly larger change in
MIX eq. Having said this, it has to be observed that, as a result
of γ being near its maximum, the numerical value forγ does
not change much with solvent polarity. That is, near the
maximum,∂γ/∂MIX eq is small, resulting in only a slight change
in the absolute value of the hyperpolarizability. Thus, while
the qualitative predictions are quite different for the two models,
the quantitative predictions ofγ are very similar.

Figure 4 shows the polarizabilitiesR, â, andγ as a function
of solvent dielectric constant for a different molecule,2[1].
Focusing first onR andγ, one sees that again the NES model
predicts a stronger solvent variation than the ES model. In
addition, significant differences in the magnitude and sign ofγ
are predicted.

Figure 4 also shows, for theâ variation for the2[1] molecules,
that the observation of different qualitative predictions for the
1[1] molecule is not an isolated case, and it is not restricted to
γ (cf. Figure 3). Here, the NES and ES models predict
qualitatively different behavior forâ. Again, a small change
in the magnitude of the hyperpolarizability is observed as a result
of being near the maximum ofâ as a function of MIXeq (which
occurs at MIXeq ) -(1/5)1/2. Comparison of the change inâ
with solvent polarity for this molecule with that for the1[1]
molecule emphasizes the small quantitative changes in the
hyperpolarizabilities near a maximum. A similar comparison
of γ versusε for these two molecules (1[1] and 2[1]) reveals
the same feature. Here again, significant differences in the
magnitude ofγ are predicted between the NES and ES models.

TABLE 1: Parameters for the Molecules Shown in Scheme 2 for Various Chain Lengths,n. Given Are the Dipole Moments in
the Neutral and Zwitterionic VB States (µN and µZ), the Electronic Coupling (t), the Equilibrium Diabatic Gap in Dioxane (Veq),
the Equilibrium Value of MIX in Dioxane (MIX eq), and the Reorganization Parameter∆Q2SF

molecule µN (D)a µZ (D) t (eV) Veq (eV) MIXeq ∆Q2SF (eV)b

1[1] 3.7 21.0 1.171 2.083 -0.66 0.326
2[1] 5.2 22.4 1.223 1.337 -0.48 0.270
3[1] 1.6 21.8 1.171 0.9639 -0.38 0.492
3[2] 2.7 27.8 0.9432 1.171 -0.52 0.473

a ParametersµN, µZ, t, andVeq are derived from electrooptical absorption data42 as described in ref 12.b ∆Q2SF is obtained by fitting solvatochromic
data,48 as detailed in section II.C.

Figure 3. R, â, andγ are shown versus the solvent dielectric constant,
ε, for the1[1] molecule. Results are shown for the present model (solid
line) and the model of Chen et al. (ref 8) (dashed line). Also plotted
(solid circles) areR, â, andγ obtained by using the individualε∞ values
specific to different solvents. (See the text.)

Figure 4. R, â, andγ are shown versus the solvent dielectric constant,
ε, for the2[1] molecule. Results are shown for the present model (solid
line) and the model of Chen et al. (ref 8) (dashed line).
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Note that the maximum inâ occurs at the same value of MIXeq

that givesγ ) 0.10

Figures 5 and 6 show calculatedR, â, andγ values versusε
for the 3[1] and 3[2] molecules. For these molecules, the
predicted solvent trends are monotonic, since MIXeq is not
immediately near any value for which the (hyper)polarizabilities
are extrema. Compared to the ES model, the NES model
predicts a more rapid variation with solvent, and for theγ values
significant differences in magnitude, especially for the longer
chain casen ) 2.

Unfortunately, experimental data for the nonlinear optical
parameter variation with solvent polarity do not yet exist for
the molecules of Scheme 2, so that the above calculations serve
as predictions. Since experimental uncertainty inâ measure-
ments is not expected to ascertain unambiguously the solvent
treatment (ES or NES) for the previous molecules, further
experimental efforts are underway to test the predictions. In
particular, improvement can be anticipated either by focusing
on push-pull molecules showing more pronouncedâ depen-
dencies50-52 or on examination of the solvent dependence of
the cubic hyperpolarizabilities (work in progress).

IV. Concluding Remarks

We have developed a treatment of push-pull molecules that,
within a two VB state model, accounts for both the bond length
alternation coordinate and a nonequilibrium solvent description,
generalizing earlier equilibrium solvation treatments in this
context.8,10,11 We derived expressions for the quantities (V(ε)
and MIXeq(ε)) necessary for the calculation of the nonlinear
optical properties, namely, the (hyper)polarizabilities, of this
class of molecule. All the model parameters characterizing a
given molecule, except the vibrational reorganization energy
λq, can be obtained in a straightforward manner from experi-
mental measurements; when Stokes shift measurements become
available,λq can also be obtained.44 In particular, the extraction
of relevant parameters for the nonlinear optical property problem
via experimental (linear) solvatochromic data avoids difficulties
and ambiguities both with charge parameters in the effective
two VB state model and with the application of simplified cavity
models8,10,11,15-18,20 to the complex push-pull molecules of
interest (though perhaps more sophisticated cavity models19,21-23,53

might also play a useful role here).
We applied this formulation to the calculation of the first

three polarizabilities (R, â, andγ) for a number of molecules
with different electron donor and acceptor groups and varying
chain lengths. We found both qualitative and quantitative
differences with the results from the equilibrium solvation model
of Chen et al.,8 which displays a weaker influence of the solvent
on the polarizabilities.

The present formulation could in principle be applied for
push-pull molecules immersed in more general environments.
Here the challenge will be to find useful ways to characterize
the analogues of the solvation contributions to the free energies
and the solvent reorganization energy.54 In particular host-
guest polymeric materials that are interesting for photonic
materials (such as low-Tg polymeric systems for photorefractive
applications)55 could be amenable to similar treatment. This is
of particular interest since controlling the environment can be
a very effective way of tuning the linear and nonlinear responses.

The present treatment can be generalized in a number of ways.
We have treated the electronic polarization of the solvent in
the Born-Oppenheimer approximation, and in general this
approximation needs generalization56 when the electronic
coupling is large. Estimates57 indicate that corrections would
not be large for the sorts of molecules discussed in the present
work, where the ground electronic state does not approach a
fifty -fifty mixture of the two VB states; in those cases where
the ground state can be so mixed, these corrections could be
necessary56 for an accurate description.

We have employed throughout a two VB state perspective,
whose validity has been supported in certain contexts7,8,14

(although as noted in section II.A, this is an effective descrip-
tion). Nontheless, it is certainly possible that, especially for
longer conjugated chains, a description involving more such
localized states will be required.30 The recent multistate
formulation of Lu et al.58 is particularly attractive in this
connection, and the necessary formalism for describing such
multiple states in a solution context is in place.59 One test for
the necessity of further states would be experimental scrutiny
of the predictions of the present model for molecular nonlinear
optical properties as a function of solvent polarity; these are in
progress.50 Another experimental probe would be studies of
excited electronic state dynamics of the push-pull molecular
systems discussed within. With the model parameters listed in
Table 1 we have confirmed that there will be a single minimum
in the excited electronic state for the Scheme 2 molecules in

Figure 5. Same as Figure 4 but for the3[1] molecule.

Figure 6. Same as Figure 4 but for the3[2] molecule.
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solution, so that dynamics subsequent to a Franck-Condon
transition from the equilibrated ground electronic state would
result in a simple time-dependent fluorescence Stokes shift as
relaxation to equilibrium in the excited state proceeds;60

involvement of more than two VB states could lead instead to
more complex dynamics involving the transition between the
states.61 Experiments to probe the dynamics are underway.62
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